domingo, 21 de julio de 2024

CÓMO TRAZAR ÁNGULOS CON PRECISIÓN

 Los ángulos están formados por 2 semirrectas que tienen el mismo punto de origen, el vértice. Esas semirrectas se llaman lados. Lo cual implica manejar una plantilla para dibujarlos con precisión, preferentemente escuadra o cartabón.

Si se desea un ángulo con una medida concreta, tendremos en cuenta que el ángulo es un sector de plano y quien lo representa completo es la circunferencia. En la medición centesimal la circunferencia se considera de 400º mientras que en la sexagesimal, típica en clase de secundaria, se consideran 360º. Las medidas de los ángulos se dan en grados, minutos y segundos y cuyas cantidades se contabilizan como en un reloj. Es decir, 60 segundos = 1 minuto, 60 minutos = 1 grado. Aunque lo más habitual es procurar trabajar con ángulos enteros en grados (sin precisar minutos, ni mucho menos segundos). ¿Y por qué se hace esto? Una explicación posible es que si dividimos la circunferencia en 24 partes angulares (1 día) obtenemos medidas iguales de 15º que curiosamente es la cantidad mínima con la que se puede trabajar el ángulo entero con la escuadra, cartabón y compás que también coincide con los meridianos terrestres y sus respectivos cambios horarios (cada 15 grados se cambia la hora del reloj). Evidentemente, la relación circunferencia y esfera es muy directa.

Pero con qué podemos trazar un ángulo entero con precisión. Pues tenemos 3 posibilidades básicas que se pueden combinar entre sí (y con al menos siempre una de las 2 plantillas).

  1. TRANSPORTADOR DE ÁNGULOS
  2. COMPÁS
  3. PLANTILLAS ESCUADRA Y CARTABÓN
Lo más habitual será que además necesitemos cambiar de sitio un ángulo por lo que conviene saber trasladar un ángulo.
La capacidad del dibujante manejando escuadra, cartabón y compás junto a su conocimiento de operaciones con ángulos: traslación, suma, resta, división entre 2 (bisectriz) le confieren versatilidad en el trazado y dominio de la precisión.

 

jueves, 9 de mayo de 2024

Clasificación de triángulos

Los triángulos son polígonos pues están delimitados por una línea quebrada (línea polígonal) cerrada que determina 3 lados (siendo la suma de dos lados mayor que la longitud del 3º) y 3 ángulos convexos (cuya suma es 180º sexagesimales).
Todos los triángulos son polígonos convexos, pues ninguno de sus ángulos puede ser cóncavo. Todos son inscribibles en una circunferencia (tienen incentro) y todos pueden ser circunscritos por una circunferencia (tienen circuncentro).
La clasificación más habitual es según dos criterios, y ambos pueden combinarse para describir mejor a un triángulo.

Criterio amplitud de ángulos
  • ACUTÁNGULOS. Si todos sus ángulos son menores de 90º.
  • RECTÁNGULOS. Si tienen un ángulo de 90º.
  • OBTUSÁNGULOS. Si tienen un ángulo mayor de 90º.
Criterio regularidad de lados
  • EQUILÁTEROS. Son los regulares. Todos sus lados tienen la misma longitud. Y sus ángulos la misma amplitud, o sea 60º.
  • ISÓSCELES. Dos de sus lados miden lo mismo. Por lo que 2 ángulos también serán iguales, justo aquellos situados en los extremos del lado desigual.
  • ESCALENO. Los 3 lados desiguales, los 3 ángulos también.