La escala es una proporción y se puede dibujar.
En primer lugar hay que comprender que la notación de escala es una fracción que compara dos tamaños, el tamaño del dibujo respecto del tamaño real de lo dibujado, es decir
E = lo que ocupa en el papel : lo que mide en la realidad
Gráficamente obtendríamos un segmento donde la medida real es el nº que vamos a utilizar para medir.
Utilizando el cm como módulo
E= 1:100
Cogeríamos con el compás 1 cm desde cero y en la medida real podríamos 100.
E= 3:7
Cogeríamos con el compás desde cero 1 cm 3 veces (3x1cm) y en la medida real podríamos 7.
E= 8:3
Cogeríamos con el compás 1 cm 8 veces (8x1cm) y en la medida real podríamos 3.
Lo siguiente es tener claro que la escala gráfica es una regla y por tanto debemos poner suficientes medidas reales para poder medir correctamente con ella (y el compás) así como subdivisiones (contraescala, a la izquierda del cero) para obtener una medición más precisa.
Esto supone tener en cuenta cómo contamos de forma rápida: De uno en uno, de 2 en 2, de 5 en 5, de 10 en 10, de 20 en 20, de 25 en 25, de 50 en 50, de 100 en 100, de 500 en 500, de 100 en 100...
Y supone también tener en cuenta el tamaño del segmento que nos ha quedado, pues si es del tamaño cm o mayor podremos dividirlo en 10 partes iguales pero si resulta más pequeño que el cm tendremos que dividirlo en menos trozos.
Para hacer la contraescala pasamos con el compás el segmento al lado izquierdo del cero. Y lo dividimos en partes iguales (aplicando Teorema de Tales si hacemos operación gráfica). Cada subparte será la precisión conseguida.
En la presentación se pueden ver distintos pasos para dibujar cada ejemplo dado, hasta una opción de aspecto final.
Guada, 2020
No hay comentarios:
Publicar un comentario